Classification of the Equilibrium Point (0, 0) of the Linear Planar System X' = A X with $\det A \neq 0$

Let λ_1 and λ_2 be the eignevalues of A.

- 1. λ_1 and λ_2 are real-valued and $\lambda_1 \neq \lambda_2$.
 - (i) $\lambda_1 < \lambda_2 < 0$: (0, 0) is a sink (stable node).
 - (ii) $0 < \lambda_1 < \lambda_2$: (0, 0) is a source (unstable node).
 - (iii) $\lambda_1 < 0 < \lambda_2$: (0, 0) is a saddle point (col).

2. $\lambda_1 = \lambda_2$.

- (a) A has two linearly independent eigenvectors.
 - (i) $\lambda_1 \leq \lambda_2 < 0$: (0, 0) is a sink (stable singular node).
 - (ii) $0 < \lambda_1 \leq \lambda_2$: (0, 0) is a source (unstable singular node).
- (b) A has only one linearly independent eigenvector.
 - (i) $\lambda_1 \leq \lambda_2 < 0$: (0, 0) is a sink (stable degenerate node).
 - (ii) $0 < \lambda_1 \leq \lambda_2$: (0, 0) is a source (unstable degenerate node).
- 3. λ_1 and λ_2 are complex-valued: λ_1 , $\lambda_2 = \alpha \pm i\beta$ with $\beta \neq 0$.
 - (i) $\operatorname{Re} \lambda_1 = \operatorname{Re} \lambda_2 = \alpha < 0$: (0, 0) is a spiral sink (stable focus).
 - (ii) $\operatorname{Re} \lambda_1 = \operatorname{Re} \lambda_2 = \alpha > 0$: (0, 0) is a spiral source (unstable focus).
 - (iii) $\operatorname{Re} \lambda_1 = \operatorname{Re} \lambda_2 = \alpha = 0$: (0, 0) is a center.

In short, for all cases,

- (i) If both $\operatorname{Re} \lambda_1$ and $\operatorname{Re} \lambda_2$ are less than zero, then (0, 0) is a sink (stable critical point).
- (ii) If both Re λ_1 and Re λ_2 are greater than zero, then (0, 0) is a source (unstable critical point).
- (iii) If $\operatorname{Re} \lambda_1$ and $\operatorname{Re} \lambda_2$ have opposite signs, then (0, 0) is a saddle point. If $\operatorname{Re} \lambda_1$ is zero but $\operatorname{Im} \lambda_1$ is not zero, then (0, 0) is a center.